Abstract
Previous Monte Carlo simulations which manipulate each Zernike coefficient of total aberrations of human eyes indicate that interactions among wave-front aberrations can provide better visual quality for both pre-LASIK eyes and post-LASIK eyes. In this paper, we go a step further for Monte Carlo simulations which are not only on total aberrations but also on corneal aberrations, before and after LASIK, for a set of eyes. The corneal aberrations after LASIK are acquired through a new reliable method. Then a series of Monte Carlo simulations (including sign simulation, value simulation and meridional simulation) are performed by manipulating each Zernike coefficient (second through sixth-order) of total aberrations as well as corneal aberrations. The results are evaluated by modulation transfer function (MTF) ratio. Total aberrations for post-LASIK eyes still show MTF advantage over randomized aberrations, with slightly change as compared to that for pre-LASIK eyes. However, true corneal aberrations before and after LASIK have no MTF advantage over random aberrations. From this research, we draw conclusions: there is apparent advantage for the complete eye's true aberrations over random aberrations, whether pre-LASIK or post-LASIK, which does not exist for any biological optical surfaces in isolation, and the ability of adaptive mechanism of human eyes, increases after LASIK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optik - International Journal for Light and Electron Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.