Abstract

In this paper I report results for simulations of the three-dimensional gauge glass and the four-dimensional XY spin glass using the parallel tempering Monte Carlo method at low temperatures for moderate sizes. The results are qualitatively consistent with earlier work on the three- and four-dimensional Edwards-Anderson Ising spin glass. I find evidence that large-scale excitations may cost only a finite amount of energy in the thermodynamic limit. The surface of these excitations is fractal, but I cannot rule out for the XY spin glass a scenario compatible with replica symmetry breaking where the surface of low-energy large-scale excitations is space filling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.