Abstract
Monte Carlo simulations are used to study lattice gases of particles with extended hard cores on a two-dimensional square lattice. Exclusions of one and up to five nearest neighbors (NN) are considered. These can be mapped onto hard squares of varying side length, lambda (in lattice units), tilted by some angle with respect to the original lattice. In agreement with earlier studies, the 1NN exclusion undergoes a continuous order-disorder transition in the Ising universality class. Surprisingly, we find that the lattice gas with exclusions of up to second nearest neighbors (2NN) also undergoes a continuous phase transition in the Ising universality class, while the Landau-Lifshitz theory predicts that this transition should be in the universality class of the XY model with cubic anisotropy. The lattice gas of 3NN exclusions is found to undergo a discontinuous order-disorder transition, in agreement with the earlier transfer matrix calculations and the Landau-Lifshitz theory. On the other hand, the gas of 4NN exclusions once again exhibits a continuous phase transition in the Ising universality class-contradicting the predictions of the Landau-Lifshitz theory. Finally, the lattice gas of 5NN exclusions is found to undergo a discontinuous phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.