Abstract

Monte Carlo simulation of heteroepitaxial growth with large mismatch is reported. The simulation model combines Monte Carlo method with an energetic model derived from the Valence Force Field (VFF). The energetic model is needed to determine stress and strain in the deposited film. Through the use of Monte Carlo method, it was possible to handle the random nature of the heteroepitaxial growth based on Arrhenius law and Poisson process. The results concern (1) the morphology of the surface, particularly the formation of islands defined by the (111) facets, (2) the growth mode as well as the formation of cavities in the deposited layers defined by these facets, (3) the strain relaxation in the deposited film. The case of In/As/GaAs transition (8% lattice mismatch) is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call