Abstract

AbstractIntermolecular potential functions have been developed for use in computer simulations of substituted benzenes. Previously reported optimized potentials for liquid simulations (OPLS) for benzene and organic functional groups were merged and tested by computing free energies of hydration for toluene, p‐xylene, phenol, anisole, benzonitrile, p‐cresol, hydroquinone, and p‐dicyanobenzene. The calculations featured Monte Carlo simulations at 25°C and 1 atm with statistical perturbation theory. The average difference between the computed results and experimental data for the absolute free energies of hydration is 0.5 kcal/mol. The AM1‐SM2 method is also found to perform well in predicting the free energies of hydration for the substituted benzenes. In addition, the Monte Carlo simulations provided details on the hydration of the substituted benzenes, in particular for the solute–water hydrogen bonding. © 1993 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.