Abstract

The Ziff-Gulari-Barshad (ZGB) model, a simplified description of the oxidation of carbon monoxide (CO) on a catalyst surface, is widely used to study properties of nonequilibrium phase transitions. In particular, it exhibits a nonequilibrium, discontinuous transition between a reactive and a CO poisoned phase. If one allows a nonzero rate of CO desorption (k), the line of phase transitions terminates at a critical point (k(c)). In this work, instead of restricting the CO and atomic oxygen (O) to react to form carbon dioxide (CO(2)) only when they are adsorbed in close proximity, we consider a modified model that includes an adjustable probability for adsorbed CO and O atoms located far apart on the lattice to react. We employ large-scale Monte Carlo simulations for system sizes up to 240×240 lattice sites, using the crossing of fourth-order cumulants to study the critical properties of this system. We find that the nonequilibrium critical point changes from the two-dimensional Ising universality class to the mean-field universality class upon introducing even a weak long-range reactivity mechanism. This conclusion is supported by measurements of cumulant fixed-point values, cluster percolation probabilities, correlation-length finite-size scaling properties, and the critical exponent ratio β/ν. The observed behavior is consistent with that of the equilibrium Ising ferromagnet with additional weak long-range interactions [T. Nakada, P. A. Rikvold, T. Mori, M. Nishino, and S. Miyashita, Phys. Rev. B 84, 054433 (2011)]. The large system sizes and the use of fourth-order cumulants also enable determination with improved accuracy of the critical point of the original ZGB model with CO desorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.