Abstract
In this work we compare Monte Carlo (MC) simulations of electron-transport properties with reflection electron energy-loss measurements in diamond and graphite films. We assess the impact of different approximations of the dielectric response on the observables of interest for the characterization of carbon-based materials. We calculate the frequency-dependent dielectric response and energy-loss functions of these materials in two ways: a full ab initio approach, in which we carry out time-dependent density functional simulations in linear response for different momentum transfers, and a semi-classical model, based on the Drude–Lorentz extension to finite momenta of the optical dielectric function. Ab initio calculated dielectric functions lead to better agreement with measured energy-loss spectra compared to the widely used Drude–Lorentz model. This discrepancy is particularly evident for insulators and semiconductors beyond the optical limit (q≠0), where single-particle excitations become relevant. Furthermore, we show that the behaviour of the energy-loss function obtained at different accuracy levels has a dramatic effect on other physical observables, such as the inelastic mean free path and the stopping power in the low energy (<100 eV) regime and thus on the accuracy of MC simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.