Abstract

Cosmogenic radionuclide analysis for determining exposure ages and erosion rates is becoming more extensively utilized. Due to the complexity of the neutron absorption production avenue, the interpretation of 36Cl data is a complex problem, particularly for non-trivial landform geometries. This work provides a numerical, Monte Carlo simulation analysis of variations in in situ cosmogenic 36Cl production rate near the bottom of vertical cliffs. It is found that in comparison with production at height (more than a thermal neutron mean free path length in air) the production rate in the cliff face increases with decreasing height, but within a thermal neutron mean free path length in rock near the bottom of the cliff, the production rate exhibits a sharp decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.