Abstract

The use of Monte Carlo simulations is presented for modelling a simplified land-mine detector system with thermal neutron backscattering (TNB) analysis based on a 252Cf-neutron source. Different aspects and a variety of external conditions, related to localisation and identification of a buried object have been investigated. In particular, the influence of moisture in a formation has been assessed, as moisture can be a serious interference for hydrogen as an indicator for explosives. The results of sensitivity calculations confirm that land-mine detection methods, based on an analysis of TNB may be applicable in homogeneous formations with low porosity provided that pore-water remains <5% by weight. In dry limestone, the TNT-based explosives can be well distinguished from other hydrogen-rich materials, except wood. However, in dry siliciclastic sands TNT explosives and wood are distinguishable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.