Abstract

Monte Carlo simulation requires a large number of sampling points. In a Monte Carlo simulation, the performance function is calculated for all sampling points to determine the failure of the design. If the calculation of the performance function involves large numerical models, a tremendous numerical cost is inevitable. In this study, a support vector machine was applied as a metamodel of the performance function to overcome this drawback. Kernel density and a modified margin of the support vector machine were used for the active learning of the support vector machine. The proportion of the support vector machine's modified margin in the design space was applied as the criterion to end active learning. The proposed method is applied to some numerical examples and examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.