Abstract

Abstract Adsorption characteristics of a solute diluted in supercritical fluids has been investigated by using the Monte Carlo simulation techniques. The Lennard-Jones potential function is used for describing interactions for a model system of CO2 + benzene in slit-like micropores with infinite graphitic carbon walls. A modified μVT ensemble method with particle exchange proposed by Cracknell, Nicholson and Quirke (1993) is found to be much superior to the conventional μVT ensemble method especially for dense mixtures in a pore. Adsorption isotherms of CO2 and benzene, in equilibrium with a dilute benzene mixture in CO2 (mole fraction of benzene = 0.001), are computed by varying pressure, temperature, the benzene–surface interaction potential, and the slitwidth. Adsorption isotherm curve of CO2 increases with an increase in pressure while that of benzene shows a maximum at a pressure far below the critical pressure of CO2 and then it decreases with increasing pressure. The decrease in benzene adsorption with increasing pressure is attributable to both the enhanced solubility in supercritical CO2 and the competitive adsorption of CO2. The isotherm curves of each component at two temperatures, 313.2 K and 323.2 K, show to cross at a pressure near the critical pressure due to the “density effect” on the chemical potentials of a solute at supercritical fluid conditions. When the interaction between a solute and a surface increases, the adsorption isotherm increases. Narrowing the slitwidth results in the increase in the adsorption of solute since the external potential from two walls becomes deeper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call