Abstract

Diffusion of polymer in narrow periodical channels, patterned alternately into part [Formula: see text] and part [Formula: see text] with the same length [Formula: see text], was studied by using Monte Carlo simulation. The interaction between polymer and channel [Formula: see text] is purely repulsive, while that between polymer and channel [Formula: see text] is attractive. Results show that the diffusion of polymer is remarkably affected by the periodicity of channel, and the diffusion constant [Formula: see text] changes periodically with the polymer length [Formula: see text]. At the peaks of [Formula: see text], the projected length of polymer along the channel is an even multiple of [Formula: see text], and the diffusion of polymer in periodical channel is nearly the same as that of polymer in homogeneous channel. While at the valleys of [Formula: see text], the projected length of polymer is an odd multiple of [Formula: see text], and polymer is in a trapped state for a long time and it rapidly jumps to other trapped regions during the diffusion process. The physical mechanisms are discussed from the view of polymer–channel interaction energy landscape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call