Abstract

The ultrashort time scale carrier dynamics of photoexcited carriers in semiconductor nanostructures is critical in controlling energy loss processes, which is necessary to realize advanced concept photovoltaic devices based on concepts such as hot carrier extraction. Here, we compare ensemble Monte Carlo (EMC) simulation of carrier dynamics in semiconductor multi-quantum well (MQW) structures with continuous wave photoluminescence studies performed in type I and type II InGaAs quantum wells. We compare the effects of including nonequilibrium phonon effects as well as the inclusion of intervalley scattering in the EMC simulations on the simulated carrier distribution functions in comparison with the PL studies. EMC analysis shows that reduced carrier cooling is predominantly due to nonequilibrium LO phonons. For type II systems, additional effects due to real space transfer and delocalization of the photoexcited holes occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call