Abstract

The results of Monte Carlo calculations of the association between nucleic acid bases in a nonpolar solvent (CCl4) are described. The influence of the solvent on planar and stacked associations of bases was examined by analyzing the total energy of the system, including solute-solute, solute-solvent, and solvent-solvent contributions. Good quantitative agreement with the available experimental data was obtained. Solute-solvent interactions are primarily determined by dispersion forces; consequently, solute-solvent interactions vertical to the solute plane that maximize dispersion interactions are most favored, and a rough proportionally between solute-solvent energy and the surface of the solute was observed. Analysis of solvent-solvent energy is not necessarily reduced when surface area decreases, contrary to the simple cavity concept. "Single molecule probe" calculations were performed to explain the differences in base associations in H2O and CCl4. In CCl4 dispersion forces dominate and planar complexes are stabilized by maximum exposure of molecular planes to the solvent. In H2O electrostatic forces dominate so that the most stable structures are stacked association that allow the maximum number of hydrophilic centers to be exposed to the solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call