Abstract

The one-dimensional steady heat flow in a dense hard sphere gas is studied solving the Enskog equation numerically by a recently proposed DSMC-like particle scheme. The accuracy of the solutions is assessed through a comparison with solutions obtained from a semi-regular method which combines finite difference discretization with Monte Carlo quadrature techniques. It is shown that excellent agreement is found between the two numerical methods. The solutions obtained from the Enskog equation have also been found in good agreement with the results of molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.