Abstract

To describe and validate the simulation of the basic features of GE Millennium MG gamma camera using the GATE Monte Carlo platform. Crystal size and thickness, parallel-hole collimation and a realistic energy acquisition window were simulated in the GATE platform. GATE results were compared to experimental data in the following imaging conditions: a point source of (99m)Tc at different positions during static imaging and tomographic acquisitions using two different energy windows. The accuracy between the events expected and detected by simulation was obtained with the Mann-Whitney-Wilcoxon test. Comparisons were made regarding the measurement of sensitivity and spatial resolution, static and tomographic. Simulated and experimental spatial resolutions for tomographic data were compared with the Kruskal-Wallis test to assess simulation accuracy for this parameter. There was good agreement between simulated and experimental data. The number of decays expected when compared with the number of decays registered, showed small deviation (≤ 0.007%). The sensitivity comparisons between static acquisitions for different distances from source to collimator (1, 5, 10, 20, 30 cm) with energy windows of 126-154 keV and 130-158 keV showed differences of 4.4%, 5.5%, 4.2%, 5.5%, 4.5% and 5.4%, 6.3%, 6.3%, 5.8%, 5.3%, respectively. For the tomographic acquisitions, the mean differences were 7.5% and 9.8% for the energy window 126-154 keV and 130-158 keV. Comparison of simulated and experimental spatial resolutions for tomographic data showed no statistically significant differences with 95% confidence interval. Adequate simulation of the system basic features using GATE Monte Carlo simulation platform was achieved and validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call