Abstract

We present Monte Carlo simulations of the self-assembly of bivalent bis-biotinylated DNA molecules with the tetravalent biotin-binding protein streptavidin (STV). By fitting the STV binding probabilities for the four possible valencies, the modelling correctly reproduces the dependencies of various network parameters experimentally observed in an earlier study. The combined results from the experimental and theoretical studies suggest that the binding probability for divalent STV formation is about 50 times larger than for the formation of trivalent and about 200 times larger than for tetravalent STV. In accordance with the experimental results, the modelling also indicates that the mixture of an equimolar ratio of DNA and STV leads to a maximum in size of the oligomeric DNA-STV clusters formed. Furthermore, we found a percolation transition in which the DNA cluster size increases rapidly with increasing DNA concentration resulting in the formation of a single supercluster at elevated concentrations. This behaviour coincides with the occurrence of an immobile band previously observed in electrophoretic experiments, indicating the formation of extremely large DNA-STV aggregate networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.