Abstract
We have modeled ultra-fast processes occurring during photoexcitation in AlGaAs/GaAs quantum wells using an ensemble Monte Carlo simulation. This simulation models the dynamics of quasi-two--dimensional electrons and holes confined within a single quantum well including the effects polar optical and transverse optical phonons, intervalley scattering, ionized impurities, and intercarrier scattering. The effect of nonequilibrium phonons and degeneracy are also included. We have used our simulation to compare to time resolved photoluminescence and transmission experiments in semiconductor quantum wells. For the latter experiments (W.H. Knox et al., Phys. Rev. Lett. 56, 1191 (1986)) performed at low excitation energies in the band, the results of our simulation show that electron-electron scattering is the dominant mechanism in accounting for the experimentally observed relaxation. While the electrons relax to form a thermalized distribution over 200 fs, the heavy holes generated at the same time relax within 50 fs, and the corresponding differential transmission spectrum is primarily determined by electron relaxation in the conduction band. Thermalization of the electrons with the cooler holes occurs over a longer time scale of 1 ps via inelastic intercarrier scattering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.