Abstract

In this article we review recent developments in computational methods for quantum statistical lattice problems. We begin by giving the necessary mathematical basis, the generalized Trotter formula, and discuss the computational tools, exact summations and Monte Carlo simulation, that will be used to examine explicit examples. To illustrate the general strategy, the method is applied to an analytically solvable, non-trivial, model: the one-dimensional Ising model in a transverse field. Next it is shown how to generalized Trotter formula most naturally leads to different path-integral representations of the partition function by considering one-dimensional fermion lattice models. We show how to analyze the different representations and discuss Monte Carlo simulation results for one-dimensional fermions. Then Monte Carlo work on one- and two-dimensional spin- 1 2 models based upon the Trotter formula approach is reviewed and the more dedicated Handscomb Monte Carlo method is discussed. We consider electron-phonon models and discuss Monte Carlo simulation data on the Molecular Crystal Model in one, two and three dimensions and related one-dimensional polaron models. Exact numerical results are presented for free fermions and free bosons in the canonical ensemble. We address the main problem of Monte Carlo simulations of fermions in more than one dimension: the cancellation of large contributions. Free bosons on a lattice are compared with bosons in a box and the effects of finite size on Bose-Einstein condensation are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call