Abstract

Abstract Through the direct simulation Monte Carlo, the Boltzmann equation is solved numerically for dilute hard spheres gas between two infinite parallel plates in relative motion and at the same time the particles feel the action of a uniform body force along the same direction as the moving plate. The study is conducted on the effect of the external force on the nonlinear properties of the Poiseuille–Couette flow. We have been interested in the bulk properties, to inhibit the influence of finite-size effects, while ignoring linear effects like Knudsen boundary layer to investigate the generalised transport coefficients depending on the shear rate nonlinearly: the two nonlinear thermal conductivity function of normal heat flux and parallel one, the viscosity function, the tangential friction function, and the thermal curvature. The results indicate that the effect of the external force is significant on the nonlinear functions, where the viscosity function and normal thermal conductivity are increasing functions of this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.