Abstract

Propagation of light in a highly scattering medium such as biological tissue is difficult to study. For complex geometry and multilayer structures computer simulation has to be used for light transport analysis. A Monte Carlo model of light propagation in tissue has been applied for the purpose of better understanding of the results of near-infrared spectroscopy (NIRS) measurements in experimental tumors. The major objective was to determine the percentage and location of the illuminated area in tumor and to estimate fraction of NIRS signal originating from the underlying tissues. Values of optical parameters used in the model were taken from literature. Tumor shape was approximated with a rotational ellipsoid. Computer simulations were made for two positions of optodes: reflectance and transmittance mode. Results of simulations indicate that in both configurations the majority of signal originates from tumor and not from surrounding tissue. In reflectance mode collected light comes from limited area near the optode whereas in transmittance mode the collected light illuminate almost whole tumor. This difference between the two modes is valid for all tissue parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.