Abstract

Classical trajectory calculations have been used to calculate the cross-section (and hence the rate constant) for the recombination of hydrogen atoms on a third hydrogen atom, in the temperature range 500–6000 K. The model involves the stabilization of a quasi-bound molecule in an encounter with the third atom. The results indicate that the cross-section for direct stabilization is small and insensitive to the relative velocity, whereas the cross-section for exchange stabilization is large at low velocities and decreases rapidly as the relative velocity is increased. The calculated rate constant, although of the right order of magnitude at 500 K, does not exhibit the anomalous features previously observed experimentally at higher temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.