Abstract

Magnetic properties of an Ising bilayer system defined on a honeycomb lattice with non-magnetic interlayers which interact via an indirect exchange coupling have been investigated by Monte Carlo simulation technique. Equilibrium properties of the system exhibit ferrimagnetism with $P$-, $N$- and $Q$- type behaviors. Compensation phenomenon suddenly disappears with decreasing strength of indirect ferrimagnetic interlayer exchange coupling. Qualitative properties are in a good agreement with those obtained by effective field theory. In order to investigate the stochastic dynamics of kinetic Ising bilayer, we have introduced two different types of dynamic magnetic fields, namely a square wave, and a sinusoidally oscillating magnetic field form. For both field types, compensation point and critical temperature decrease with increasing amplitude and field period. Dynamic ferromagnetic region in the presence of square wave magnetic field is narrower than that obtained for sinusoidally oscillating magnetic field when the amplitude and the field period are the same for each type of dynamic magnetic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.