Abstract

We have performed the Monte Carlo simulation of the processes of secondary ionization of water induced by cascade decays of inner-shell vacancies in an iron atom placed in water. We have obtained the spectra of electrons and photons emitted during the decay of vacancies in the K and L shells of the iron atom. The dependences of the number of secondary ionization events and the energy absorbed as a result of these processes on the radius of the sphere in which such processes occur have been calculated. The decay of a single 1s vacancy in an iron atom generates on the average 232 events of secondary ionization induced by an electron impact, in which the energy of 3274 eV is absorbed, as well as 18 secondary photoionization events, in which the energy of 256 eV is absorbed. The dependences of the dose absorbed in water on the distance from the iron atom have been calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.