Abstract

The formation of the electrical double layer (EDL) in the presence of trivalent and monovalent ions inside a slit-type nanopore was simulated via the canonical Monte Carlo method using a primitive model. In large pores, the distribution of ionic species is similar to that observed in an isolated planar double layer. Screening of surface charge is determined by the competitive effects between ion size and charge asymmetry of the counterions. On the other hand, as the pore size approaches the dimension of the ionic species, phenomena such as EDL overlapping become enhanced by ion-size effects. Simulation results demonstrate that EDL overlapping is not only a function of such parameters as ionic strength and surface charge density, but also a function of the properties of the ionic species involved in the EDL. Furthermore, charge inversion can be observed under certain conditions when dealing with mixtures of asymmetric electrolytes. This phenomenon results from strong ion-ion correlation effects and the asymmetries in size and charge of ionic species, and is most significant in the case of trivalent counterions with larger diameters. The simulation results provide insights into the fundamental mechanisms behind the formation of EDL within nanopores as determined by pore size and by the properties of ionic species present in solution. The findings of this work are relevant to ion sorption and transport within nanostructured materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.