Abstract

AbstractSummary: Monte Carlo method was used to simulate the degradation of porous PLA scaffolds. The simulated volume was assumed to be divided homogeneously between the pore and solid PLA with the ratio equal to the bulk porosity of the scaffold. The volume was divided into surface and bulk elements where the surface elements were in direct contact with the aqueous degradation medium, while the bulk elements were surrounded by the pore and solid PLA. The effect of degradation time on PLA ester groups and carboxylic acid end‐groups for surface and bulk elements, pH, PLA degradation rate and mass loss, and PLA molecular weight distribution was simulated. For surface elements, pH remained constant at 7.4 over the entire time of degradation, while for bulk elements its value decreased significantly to as low as 5.8. The highest drop in pH within the scaffold was observed for the highest porosity of 90%. There was a lag time of at least 7 weeks in the mass loss for surface as well as bulk elements for porosities ranging from 70 to 90%. The mass loss for bulk elements was considerably faster than the surface elements. This difference in the rate of mass loss between the surface and bulk elements could affect the 3D morphology and dimensional stability of the scaffold in vivo as degradation proceeds. The simulation predicts that, due to differences in the rate of bulk and surface degradation, hollow structures could form inside the scaffold after 19, 17, and 15 weeks for initial porosities of 70, 80, and 90%, respectively.A schematic diagram illustrating the degradation of an element on the outer surface of the scaffold (surface element) versus an element within the volume of the scaffold (bulk element).imageA schematic diagram illustrating the degradation of an element on the outer surface of the scaffold (surface element) versus an element within the volume of the scaffold (bulk element).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.