Abstract

Melanin content and distribution in skin were studied by examining a patient with white, brown and blue skin tones expressed on skin affected by vitiligo. Both diffuse reflectance and autofluorescence spectra of the three distinction skin sites were measured and compared. Monte Carlo simulations were then performed to help explain the measured spectral differences. The modeling is based on a six-layer skin optical model established from published skin optical parameters and by adding melanin content into different locations in the model skin. Both the reflectance and fluorescence spectra calculated by Monte Carlo (MC) simulation were approximately in agreement with experimental results. The study suggests that: (1) trichrome vitiligo skin may be an ideal in vivo model for studying the effect of skin melanin content and distribution on skin spectroscopy properties. (2) Based on the skin optical model and MC simulation, the content and distribution of melanin in skin, or other component of skin could be simulated and predicted. (3) Both reflectance and fluorescence spectra provided information about superficial skin structures but fluorescence spectra are capable of providing information from deeper cutaneous structures. (4) The research method, including the spectral ratio method, the method of adding and modifying the melanin content in skin optical models, and MC simulation could be applied in other non-invasive optical studies of the skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call