Abstract

A Monte Carlo Potts model has been used to investigate cube-texture strengthening during grain growth in rolled high-purity Ni-tapes. The initial conditions for the simulations have been taken from electron back-scatter pattern (EBSP) orientation maps of already fully recrystallized samples. Experimentally, grain growth leads to an increase in the cube volume fraction to >95% , accompanied by an approximately ten-fold increase in the grain size. High cube volume fractions can be predicted under a number of conditions, though a small surface energy advantage of just 2% for cube-oriented grains is required to match the texture strengthening to the grain size change. An additional issue of interest is the influence on the grain growth of the large area-fraction of twin boundaries in the fully recrystallized condition. The presence of boundaries with low energy has a strong influence on the simulated microstructural evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.