Abstract

Numerical simulations of two-dimensional ${\mathrm{CP}}^{N\ensuremath{-}1}$ models are performed at $N=2, 10, \mathrm{and} 21$. The lattice action adopted depends explicitly on the gauge degrees of freedom and shows precocious scaling. Our tests of scaling are the stability of dimensionless physical quantities (second moment of the correlation function versus inverse mass gap, magnetic susceptibility versus square correlation length) and rotation invariance. Topological properties of the models are explored by measuring the topological susceptibility and by extracting the Abelian string tension. Several different (local and nonlocal) lattice definitions of topological charge are discussed and compared. The qualitative physical picture derived from the continuum $\frac{1}{N}$ expansion is confirmed, and agreement with quantitative $\frac{1}{N}$ predictions is satisfactory. Variant (Symanzik-improved) actions are considered in the C${\mathrm{P}}^{1}$ \ensuremath{\cong} O(3) case and agreement with universality and previous simulations (when comparable) is found. The simulation algorithm is an efficient mixture of over-heat-bath and microcanonical algorithms. The dynamical features and critical exponents of the algorithm are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.