Abstract

An algorithm for the simulation of bremsstrahlung emission by fast electrons using numerical cross sections is described. It is based on natural factorization of the double-differential cross section and on the fact that the intrinsic angular distribution of photons with a given energy can be very closely approximated by a Lorentz-boosted dipole distribution. The parameters of this angular distribution vary smoothly with the atomic number of the target atom and with the energies of the projectile’s electron and the photon emitted. Results from simulations of thick-target bremsstrahlung are compared with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.