Abstract

A prompt γ neutron activation analysis (PGNAA) facility based on a 252 Cf spontaneous fission neutron was performed with the final goal of obtaining various optimised radiation protection design parameters. MCNP Monte Carlo code was used to simulate the lead (Pb) shield thickness on two sides of the sample chamber, and B4 C, B2O3, LiOH, LiF, and borax were selected as neutron-absorbing materials that were simulated to determine optimal parameters for the optimal design of a biological multilayer composite shield. A series of calculations performed with the MCNP code indicated that the 5 cm thick Pb innermost layer of a biological shield rapidly reduced fast neutrons, and a moderation layer of 25 cm thick paraffin, 20 mm thick borax, and 2 mm thick B4 C were selected as neutron-absorbing materials. The calculated biological shield protection parameters satisfied the requirements of the PGNAA facility used in the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.