Abstract

The thermodynamic and structural properties of acetonitrile clusters [CH3CN]N, N=2–15, 20, 30, 60, 128, and 256 have been investigated using Monte Carlo simulation. Interactions in the small clusters (N≤9) are dominated by antiparallel pairing of the molecular dipoles. The simulations reveal rigid ↔ fluid (melting) transitions with a remarkable even–odd alternation in the transition temperatures for the N=2–9 clusters. The higher melting temperatures of the even-N clusters arise as consequences of the antiparallel paired dipoles which provide favorable electrostatic interactions. Even–odd alternation has also been observed in the configurational energies and heat capacities and the percentage of molecules possessing an antiparallel nearest neighbor. These observations are consistent with the fact that Coulomb potential terms dominate the interaction energies in clusters with N<12. The average density in clusters with N≳60 is fairly well represented by the bulk liquid density. Order parameters characterizing dipole orientation indicate that the molecular dipoles tend to lie flat on the cluster surface for N≥30. Significant dimerization within the clusters suggests evaporation of molecules via dimers and an enhancement of evaporative loss over condensation and this may explain the slower nucleation rates observed for acetonitrile compared to the predictions of the classical nucleation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.