Abstract

By means of the Direct Simulation Monte Carlo method, the Boltzmann equation is numerically solved for a gas of hard spheres enclosed between two parallel plates kept at different temperatures and subject to the action of a gravity field normal to the plates. The profiles of pressure, density, temperature and heat flux are seen to be quite sensitive to the value of the gravity acceleration $g$. If the gravity field and the heat flux are parallel ($g>0$), the magnitudes of both the temperature gradient and the heat flux are smaller than in the opposite case ($g 0$, the ratio increases as the reduced local field strength increases, while the opposite happens if $g<0$. The simulation results are compared with theoretical predictions for Maxwell molecules

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.