Abstract

Thin Film layers of metal are often prepared by magnetron sputtering technique for electronic, optical and micro/nanoelectromechanical systems. Usually, experimental work is a common way to find out the optimum deposition conditions and correlate between the thin film properties and the deposition parameters. However, experimental methods are very exhaustive, time and cost-consuming. A good simulation model which can provide the optimum operating conditions to avoid exhaustive experiments and reduce time and cost is highly recommended. Therefore, the present paper is focusing on the development of a computer simulation model of the deposition process in the magnetron sputtering system since such type of models is not well established yet. Monte Carlo (MC) simulation model has been developed to study the effects of deposition parameters on the deposition rate and thin film thickness uniformity. Titanium (Ti) samples were used as the target whereas argon (Ar) was the ambient inert gas. MC simulation has successfully predicted the optimum deposition rate and thickness of Ti thin films on the plastic substrate. The model also depicted the performance of magnetron deposition due to change of processing parameters. Comparison between the simulation and experimental results proved the validity of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.