Abstract
Monte Carlo code for fast hydrogen atom transport and generating of excessively Doppler broadened profiles based on the collision model is presented. Results for the initial monoenergetic atom beam and for a more realistic energy distribution of H atoms are reported. Line profiles obtained from the simulation are compared to our experimentally obtained data. Initial energy distribution for atoms is approximately calculated from the measured line profiles while the initial angle distribution was taken to be cosine. Balmer alpha intensity was found to exponentially decay in the negative glow region, which concurs with the experimental results. These agreements between the simulation and experiment support the collision model for excessive line broadening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.