Abstract

The objective of the present work was to propose a design of a secondary multileaf collimator (MLC) for a telecobalt machine and optimize its design features through Monte Carlo simulation. The proposed MLC design consists of 72 leaves (36 leaf pairs) with additional jaws perpendicular to leaf motion having the capability of shaping a maximum square field size of 35 × 35 cm(2). The projected widths at isocenter of each of the central 34 leaf pairs and 2 peripheral leaf pairs are 10 and 5 mm, respectively. The ends of the leaves and the x-jaws were optimized to obtain acceptable values of dosimetric and leakage parameters. Monte Carlo N-Particle code was used for generating beam profiles and depth dose curves and estimating the leakage radiation through the MLC. A water phantom of dimension 50 × 50 × 40 cm(3) with an array of voxels (4 × 0.3 × 0.6 cm(3) = 0.72 cm(3)) was used for the study of dosimetric and leakage characteristics of the MLC. Output files generated for beam profiles were exported to the PTW radiation field analyzer software through locally developed software for analysis of beam profiles in order to evaluate radiation field width, beam flatness, symmetry, and beam penumbra. The optimized version of the MLC can define radiation fields of up to 35 × 35 cm(2) within the prescribed tolerance values of 2 mm. The flatness and symmetry were found to be well within the acceptable tolerance value of 3%. The penumbra for a 10 × 10 cm(2) field size is 10.7 mm which is less than the generally acceptable value of 12 mm for a telecobalt machine. The maximum and average radiation leakage through the MLC were found to be 0.74% and 0.41% which are well below the International Electrotechnical Commission recommended tolerance values of 2% and 0.75%, respectively. The maximum leakage through the leaf ends in closed condition was observed to be 8.6% which is less than the values reported for other MLCs designed for medical linear accelerators. It is concluded that dosimetric parameters and the leakage radiation of the optimized secondary MLC design are well below their recommended tolerance values. The optimized design of the proposed MLC can be integrated into a telecobalt machine by replacing the existing adjustable secondary collimator for conformal radiotherapy treatment of cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.