Abstract
Thermal–Hydraulic (T–H) passive safety systems are potentially more reliable than active systems, and for this reason are expected to improve the safety of nuclear power plants.However, uncertainties are present in the operation and modeling of a T–H passive system and the system may find itself unable to accomplish its function. For the analysis of the system functional failures, a mechanistic code is used and the probability of failure is estimated based on a Monte Carlo (MC) sample of code runs which propagate the uncertainties in the model and numerical values of its parameters/variables.Within this framework, sensitivity analysis aims at determining the contribution of the individual uncertain parameters (i.e., the inputs to the mechanistic code) to (i) the uncertainty in the outputs of the T–H model code and (ii) the probability of functional failure of the passive system. The analysis requires multiple (e.g., many hundreds or thousands) evaluations of the code for different combinations of system inputs: this makes the associated computational effort prohibitive in those practical cases in which the computer code requires several hours to run a single simulation.To tackle the computational issue, in this work the use of the Subset Simulation (SS) and Line Sampling (LS) methods is investigated. The methods are tested on two case studies: the first one is based on the well-known Ishigami function [1]; the second one involves the natural convection cooling in a Gas-cooled Fast Reactor (GFR) after a Loss of Coolant Accident (LOCA) [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.