Abstract
We developed a Monte Carlo simulation based scatter correction method for 3D list-mode image reconstruction, and tested the method with Monte Carlo simulations. First, an emission image without scatter correction was reconstructed using MLEM. A transmission image was generated with the CT image. Then, based on the emission and transmission images, GATE was used to simulate coincidence events with their line-of responses (LORs) grouped according to their spatial positions (e.g. interaction positions or detector modules). The scatter ratio (scatter vs total coincidences) in each LOR group was calculated and stored in a scatter table. Finally, the scatter table was applied in a new image reconstruction to correct the scatter on the basis of each LOR group. The method was implemented in a simulated brain-size PET, with 300×300×100 mm3 FOV, 2×2×30 mm3 LYSO crystals, and 5 mm depth-of-interaction (DOI) resolution. Images of a 150×150×80 mm3 PMMA phantom inserted with three different radioisotope distributions were studied, including a point source array, a hot rod matrix, and a uniform source. We used detector module as the criteria to group LORs. With scatter correction, image resolution was almost the same as measured by point sources at different FOV positions; hot-rod sources showed visually improved image quality with reduced background noise; image SNR of the uniform source was not impacted. This method has been successfully implemented in the brain-size PET with improved image quality. It can be potentially applied to other list-mode 3D PET systems, with considering the accuracy and variation of scatter ratio in LOR grouping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.