Abstract

The inhibition of 1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1H-benzimidazole (MMB) on corrosion of XC48 steel in solutions 1.0 M HCl and 0.5 M H2SO4 were studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques (EIS). Potentiodynmic polarization curves revealed that MMB acts as a mixed-type inhibitor in both acidic media. The impedance results indicated that the corrosion process occurs under activation control. Furthermore, MMB shows a higher inhibition efficiency in HCl (97%) than in H2SO4 (92%) at 10−4 M MMB. The values of ΔG°ads, ΔHa, Ea and ΔSa in temperature range 293–323 K indicated that MMB strongly retarded the corrosion of XC48 steel in both solutions by a chemisorptions process. The adsorption of Benzimidazole (MMB) on carbon steel surface followed Langmuir adsorption isotherm. Scanning electron microscopy (SEM) analysis confirmed that there is an adsorbed film on the surface of XC48 steel. The results of Monte Carlo simulations studies confirmed the inhibition action of MMB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call