Abstract

Accurate dimensional inspection and error analysis of free-form surfaces requires accurate registration of the component in hand. Registration of surfaces defined as non-uniform rational B-splines (NURBS) has been realized through an implementation of the iterative closest point method (ICP). The paper presents performance analysis of the ICP registration method using Monte Carlo simulation. A large number of simulations were performed on an example of a precision engineering component, an aero-engine turbine blade, which was judged to possess a useful combination of geometric characteristics such that the results of the analysis had generic significance. Data sets were obtained through CAD (computer aided design)-based inspection. Confidence intervals for estimated transformation parameters, maximum error between a measured point and the nominal surface (which is extremely important for inspection) mean error and several other performance criteria are presented. The influence of shape, number of measured points, measurement noise and some less obvious, but not less important, factors affecting confidence intervals are identified through statistical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.