Abstract

The conversion of biomass to 5-hydroxymethylfurfural (HMF) holds substantial promise as a renewable energy source. Notably, HMF can be transformed into 2,5-bis(hydroxymethyl)furan (BHMF), a crucial reactant in biofuel production, but requires harsh operating conditions, H2, and precious metal catalysts. A recently reported Cannizzaro reaction of HMF to BHMF, characterized by its efficiency, mild conditions, and eco-friendliness, instead employed ionic liquids (ILs) to achieve high yields. In this study, combined quantum mechanical and molecular mechanical (QM/MM) simulations in conjunction with Metropolis Monte Carlo statistical mechanics and free-energy perturbation theory utilized M06-2X/6-31+G(d), PDDG/PM3, and the OPLS-VSIL force field to uncover important solute-solvent interactions present in the HMF to BHMF reaction pathway. The Cannizzaro reaction was examined in water and in five ILs composed of the 1-butyl-3-methylimidazolium [BMIM] cation coupled to hexafluorophosphate, tetrafluoroborate, thiocyanate, chloride, and bromide. Energetic and structural analysis of the rate-determining hydride transfer between HMF and the hydride-donor anion HMFOH- attributed the enhanced reactivity to highly organized solvent interactions featuring (1) hydrogen bonding between the ring protons of [BMIM] and the negatively charged carbonyl oxygen atoms on the transition structure, (2) favorable electrostatic interactions between the IL anions and solute hydroxyl groups, and (3) beneficial π-π stacking interactions between [BMIM] and the two aromatic rings present in HMF and HMFOH-.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.