Abstract

To model the avalanche breakdown of a voltage regulator diode under reverse bias, a computationally rigorous device physics model using the Monte Carlo method to solve charge carrier Boltzmann transport equations (BTEs) is proposed. The transport of energetic charge carriers is calculated by using the full energy band instead of the non-parabolic band structure. The position-dependent doping profile found in real diodes is modeled accurately and time-efficiently. A two-step method is introduced to accelerate the simulation of avalanche breakdown. With the proposed model, the expected IV characteristics of a voltage regulator diode under reverse bias are simulated. The transport of charge carriers and avalanche breakdown are modeled at the microscopic level, and the simulation results are verified through comparison with the IV characteristics from the datasheet. This model can be used to analyze device susceptibility to electrical stress, providing a graphical visualization for failure mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.