Abstract

The physics of imaging with metal/phosphor (Gd2O2S:Tb on brass) screens at megavoltage energies has been investigated using Monte Carlo simulation. It has been found that pair production is a significant contributor to energy deposition for Bremsstrahlung beams with energies greater than 6 MV. The effects of different thicknesses of phosphor and metal have been studied, and it is shown that the metal plays a significant role in establishing electronic equilibrium in the phosphor. The transport of optical photons through the phosphor has been modeled, and was found that only 10% to 20% of the light created in the phosphor escapes from the surface, with much of the loss being due to total internal reflection at the surface. Calculated results have been compared with experimental measurements of screen brightness for different phosphor and metal thicknesses. The SNR of a video electronic portal imaging device (VEPID) has been calculated as a function of x-ray and optical photon detection efficiency. The non-Poisson distribution of energy deposition in the phosphor is an important contributor to the SNR. The results of this paper should serve as a useful guide to the engineering design of future electronic portal imaging systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.