Abstract

In order to ensure that drug administration is safe during pregnancy, it is crucial to have the possibility to predict the placental permeability of drugs in humans. The experimental method which is most widely used for the said purpose is in vitro human placental perfusion, though the approach is highly expensive and time consuming. Quantitative structure-activity relationship (QSAR) modeling represents a powerful tool for the assessment of the drug placental transfer, and can be successfully employed to be an alternative in in vitro experiments. The conformation-independent QSAR models covered in the present study were developed through the use of the SMILES notation descriptors and local molecular graph invariants. What is more, the Monte Carlo optimization method, was used in the test sets and the training sets as the model developer with three independent molecular splits. A range of different statistical parameters was used to validate the developed QSAR model, including the standard error of estimation, mean absolute error, root-mean-square error (RMSE), correlation coefficient, cross-validated correlation coefficient, Fisher ratio, MAE-based metrics and the correlation ideality index. Once the mentioned statistical methods were employed, an excellent predictive potential and robustness of the developed QSAR model was demonstrated. In addition, the molecular fragments, which are derived from the SMILES notation descriptors accounting for the decrease or increase in the investigated activity, were revealed. The presented QSAR modeling can be an invaluable tool for the high-throughput screening of the placental permeability of drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.