Abstract

Based on Vaughanʼs empirical formula of secondary emission yield and the assumption of mutual exclusion of each type of secondary electron, a mathematically self-consistent secondary emission model is proposed. It identifies each generated secondary electron as either elastic reflected, rediffused, or true secondary, hence, it allows the use of distinct emission energy and angular distributions of each type of electron. Monte Carlo modeling of the developed model is presented, and second-order algorithms for particle collection and ejection at the secondary-emission wall are developed in order to incorporate the secondary electron emission process in the standard leap-frog integrator. The accuracy of these algorithms is analyzed for general fields and is confirmed by comparing the numerically computed values with the exact solution under a homogeneous magnetic field. In particular, the phenomenon of multipactor electron discharge on a dielectric is simulated to verify the usefulness of the model developed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call