Abstract

After primary recrystallization of highly rolled (>98% reduction) high purity Ni (99.999%) tapes the cube texture fraction can range from 45 - 65%. Annealing at temperatures >1000oC leads to cube texture volume fractions of >95% as a result of grain growth. A Monte Carlo Potts model was used to simulate this annealing process. The starting microstructures for the simulations were generated from experimental data taken using electron backscatter pattern analysis. The simulation results suggest that in addition to the grain boundary misorientation and energy functions used, the misorientation texture and grain sizes are also determining factors in the grain growth process. As the grain size after recrystallization is comparable to the tape thickness, the surface energy of the grains may also be an important factor. Simulations were therefore also carried using a surface energy term. If the cube grains have a lower surface energy then a stronger cube texture is predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.