Abstract

AbstractAtomic vapor transport has been investigated in the low vacuum (5 – 100 Pa) supersonic gas jets encountered in directed vapor deposition processes using a combination of Direct Simulation Monte Carlo (DSMC) techniques and a bimolecular collision model. The DSMC code generates the velocity vector, pressure, and temperature field for the carrier gas flow. This data is used as an input to a bimolecular collision model of atomic vapor transport in the flow. In the collision model, calculation of directed momentum loss cross-sections allows the location of carrier gas/vapor atom collisions to be deduced, and the vapor atom velocity vectors for individual vapor atoms to be tracked from source to substrate. For atoms arriving at the substrate, the impact location and velocity vector are obtained, making possible calculation of deposition efficiency, film thickness, adatom energy, and impact angle. These are the key inputs for simulations of resulting film microstructure/morphology evolution. Preliminary results for atomic transport of Cu vapor in supersonic He flows compare favorably with previously reported experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.