Abstract

One of the commonly used approaches of solving electron transport problems in quantum cascade lasers (QCL) is the Monte Carlo (MC) method, based on semiclassical description in the framework of the Boltzmann Transport Equation. A major benefit of MC modeling is that it only relies on well-established material parameters and structure specification, in most cases without the need to use phenomenological parameters. The results of the modeling can be easily interpreted and they give microscopic insight of QCL operation. The goal of the present paper is to review the application of the MC technique to the studies of operation of QCL. The description of the components of the simulation algorithm is provided. Various physical mechanisms governing electron transport in QCL are described and their influence on the operation are reviewed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.