Abstract
Stochastic models for the solution of nonlinear partial differential equations are discussed. They consist of a discretized version of these equations and Monte Carlo techniques. The Markov transitions are based on a priori estimates of the solution. To improve the efficiency of stochastic smoothers a Monte Carlo multigrid method is presented. The numerical results presented show the convergence of these methods. Some directions for the parallelization of the Monte Carlo algorithms presented are outlined. The techniques introduced make possible the extension of Monte Carlo methods to nonlinear problems, offering a new approach with an analytic potential for a wide range of problems in computational physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.