Abstract

When using a model-based approach to geostatistical problems, often, due to the complexity of the models, inference relies on Markov chain Monte Carlo methods. This article focuses on the generalized linear spatial models, and demonstrates that parameter estimation and model selection using Markov chain Monte Carlo maximum likelihood is a feasible and very useful technique. A dataset of radionuclide concentrations on Rongelap Island is used to illustrate the techniques. For this dataset we demonstrate that the log-link function is not a good choice, and that there exists additional nonspatial variation which cannot be attributed to the Poisson error distribution. We also show that the interpretation of this additional variation as either micro-scale variation or measurement error has a significant impact on predictions. The techniques presented in this article would also be useful for other types of geostatistical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.